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Overview 

•  Recall 
−  deterministic ω-automata (DBA or DRA) and DTMCs 

•  LTL model checking for DTMCs 
−  measurability 
−  complexity 
−  PCTL* model checking for DTMCs 

•  LTL model checking for MDPs 
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Recall - DBA and DRA 
•  Deterministic Büchi automata (DBA) 

−  (Q, Σ, δ, q0, F) 
−  accepting run must visit some state in F infinitely often 
−  less expressive than nondeterministic Büchi automata (NBA) 

•  Deterministic Rabin automata (DRA) 
−  (Q, Σ, δ, q0, Acc) 
−  Acc = { (Li, Ki) | 1≤i≤k } 
−  for some pair (Li, Ki), the states in Li must be visited finitely 

often and (some of) the states in Ki visited infinitely often 
−  equally expressive as NBA 
−  (i.e. all ω-regular properties; and hence all LTL formulae) 
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Product DTMC for a DBA 
•  For DTMC D and DBA A 

−  where qs = δ(q0,L(s)) 
•  Hence: 

−  where TGFaccept is the union of all BSCCs T in D⊗A with T∩Sat
(accept)≠∅ 

•  Reduces to computing BSCCs and reachability probabilities 

ProbD(s, A) = ProbD⊗A((s,qs), GF accept) 

ProbD(s, A) = ProbD⊗A((s,qs), F TGFaccept) 
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Product DTMC for a DRA 
•  For DTMC D and DRA A 

−  where qs = δ(q0,L(s)) 
•  Hence: 

−  where TAcc is the union of all accepting BSCCs in D⊗A 
−  an accepting BSCC T of D⊗A is such that, for some 1≤i≤k: 

•  q ⊨ ¬li for all (s,q) ∈ T and q ⊨ ki for some (s,q) ∈ T 
•  i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅ 

•  Reduces to computing BSCCs and reachability probabilities 

ProbD(s, A) = ProbD⊗A((s,qs), F TAcc) 

ProbD(s, A) = ProbD⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki) 
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LTL model checking for DTMCs 
•  Model check LTL specification P~p [ ψ ]  against DTMC D 

•  1. Generate a deterministic Rabin automaton (DRA) for ψ 
−  build nondeterministic Büchi automaton (NBA) for ψ [VW94] 
−  convert the NBA to a DRA [Saf88] 

•  2. Construct product DTMC D⊗A 
•  3. Identify accepting BSCCs of D⊗A 
•  4. Compute probability of reaching accepting BSCCs 

−  from all states of the D⊗A 
•  5. Compare probability for (s, qs) against p for each s 

•  Qualitative LTL model checking - no probabilities needed  
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Example 3 (Lec 17) revisited 
•  Model check P>0.2 [ FG a ] 

•  Result: 
−  Prob(FG a) = [ 0.125, 0.5, 1, 0, 0, 1 ] 
−  Sat(P>0.2 [ FG a ]) = { s1, s2, s5 } 
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Acc = { ({q0},{q1}) } 



8 DP/Probabilistic Model Checking, Michaelmas 2011 

Measurability of ω-regular properties 
•  For any ω-regular property ψ 

−  the set of ψ-satisfying paths in any DTMC D is measurable 
•  Hence, the same applies to 

−  any regular safety property 
−  any LTL formula 

•  Proof sketch 
−  any ω-regular property can be represented by a DRA A 
−  we can construct D⊗A, in which there is a direct mapping from 

any path ω in D to a path ω’ in D⊗A 
− ω ⊨ ψ iff ω’ ⊨ 
−  GF Φ and FG Φ are measurable (see lecture 3) 
−  ∧ and ∨ = intersection/union (which preserve measurability) 
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Complexity 
•  Complexity of model checking LTL formula ψ on DTMC D 

−  is doubly exponential in |ψ| and polynomial in |D| 
−  (for the algorithm presented in these lectures) 

•  Converting LTL formula ψ to DRA A 
−  for some LTL formulae of size n, size of smallest DRA is  

•  BSCC computation 
−  Tarjan algorithm - linear in model size (states/transitions) 

•  Probabilistic reachability 
−  linear equations - cubic in (product) model size 

•  In total: O(poly(|D|,|A|)) 
•  In practice: |ψ| is small and |D| is large 
•  Complexity can be reduced to single exponential in |ψ| 

−  see e.g. [CY88,CY95] 
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PCTL* model checking 
•  PCTL* syntax: 

−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] 

−  ψ  ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
•  Example: 

−  P>p [ GF ( send → P>0 [ F ack ] ) ] 

•  PCTL* model checking algorithm 
−  bottom-up traversal of parse tree for formula (like PCTL) 
−  to model check P~p [ ψ ]: 

•  replace maximal state subformulae with atomic propositions 
•  (state subformulae already model checked recursively) 
•  modified formula ψ is now an LTL formula 
•  which can be model checked as for LTL 
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Recall - end components in MDPs 
•  End components of MDPs 

are the analogue of BSCCs in DTMCs 

•  An end component is a  
strongly connected sub-MDP 

•  A sub-MDP comprises a subset 
of states and a subset of the  
actions/distributions available  
in those states, which is closed  
under probabilistic branching 
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Note: 
●  action labels omitted 
●  probabilities omitted where =1 
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Recall - end components in MDPs 
•  End components of MDPs 

are the analogue of BSCCs in DTMCs 

•  For every end component, there  
is an adversary which, with 
probability 1, forces the MDP 
to remain in the end component,  
and visit all its states infinitely often 

•  Under every adversary σ, with 
probability 1, the set of states 
visited infinitely often forms 
an end component  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Recall - long-run properties of MDPs 
•  Maximum probabilities 

−  pmax(s, GF a) = pmax(s, F TGFa) 
•  where TGFa is the union of sets T for all end components 

(T,Steps’) with T ∩ Sat(a) ≠ ∅ 

−  pmax(s, FG a) = pmax(s, F TFGa) 
•  where TFGa is the union of sets T for all end components 

(T,Steps’) with T ⊆ Sat(a) 

•  Minimum probabilities 
−  need to compute from maximum probabilities… 
−  pmin(s, GF a) = 1- pmax(s, FG¬a) 
−  pmin(s, FG a) = 1- pmax(s, GF¬a) 
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Automata-based properties for MDPs 
•  For an MDP M and automaton A over alphabet 2AP 

−  consider probability of “satisfying” language L(A) ⊆ (2AP)ω  
−  ProbM,σ(s, A) = Prs

M,σ
 { ω ∈ PathM,σ(s) | trace(ω) ∈ L(A) } 

−  pmax
M(s, A) = supσ∈Adv ProbM,σ(s, A) 

−  pmin
M(s, A) = infσ∈Adv ProbM,σ(s, A) 

•  Might need minimum or maximum probabilities 
−  e.g. s ⊨ P≥0.99 [ ψgood ] ⇔ pmin

M
 (s, ψgood) ≥ 0.99 

−  e.g. s ⊨ P≤0.05 [ ψbad ] ⇔ pmax
M

 (s, ψbad) ≤ 0.05 
•  But, ψ-regular properties are closed under negation 

−  as are the automata that represent them 
−  so can always consider maximum probabilities… 
−  pmax

M(s, ψbad) or 1 - pmax
M(s, ¬ψgood)  
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LTL model checking for MDPs 
•  Model check LTL specification P~p [ ψ ]  against MDP M 

•  1. Convert problem to one needing maximum probabilities 
−  e.g. convert P>p [ ψ ] to P<1-p [ ¬ψ ] 

•  2. Generate a DRA for ψ (or ¬ψ) 
−  build nondeterministic Büchi automaton (NBA) for ψ [VW94] 
−  convert the NBA to a DRA [Saf88] 

•  3. Construct product MDP M⊗A 
•  4. Identify accepting end components (ECs) of M⊗A 
•  5. Compute max. probability of reaching accepting ECs 

−  from all states of the D⊗A 
•  6. Compare probability for (s, qs) against p for each s 
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Product MDP for a DRA 
•  For a MDP M = (S, sinit, Steps, L) 
•  and a (total) DRA A = (Q, Σ, δ, q0, Acc) 

−  where Acc = { (Li, Ki) | 1≤i≤k } 

•  The product MDP M ⊗ A is: 
−  the MDP (S×Q, (sinit,qinit), Steps’, L’) where: 
      qinit = δ(q0,L(sinit)) 
      Steps’(s,q) = { µq | µ ∈ Step(s) } 

   li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki 
      (i.e. state sets of acceptance condition used as labels)  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Product MDP for a DRA 
•  For MDP M and DRA A 

−  where qs = δ(q0,L(s)) 

•  Hence: 

−  where TAcc is the union of all sets T for accepting end 
components (T,Steps’) in D⊗A 

−  an accepting end components is such that, for some 1≤i≤k: 
•  (s,q) ⊨ ¬li for all (s,q) ∈ T and (s,q) ⊨ ki for some (s,q) ∈ T 
•  i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅ 

pmax
M(s, A) = pmax

M⊗A((s,qs), F TAcc) 

pmax
M(s, A) = pmax

M⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki) 
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MDPs - Example 1 
•  Model check P<0.8 [ G ¬b ∧ GF a ] 

•  Result: 
−  pmax(G ¬b ∧ GF a) = [ 0.7, 0, 1, 1 ] 
−  Sat(P<0.8 [ G ¬b ∧ GF a ]) = { s0, s1 } 
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Acc = { (∅, {q1}) } 
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MDPs - Example 2 
•  Model check P>0 [ G ¬b ∧ GF a ] 

−  pmin(s, G ¬b ∧ GF a) = 1 - pmax(s, ¬(G ¬b ∧ GF a)) 
                                   = 1 - pmax(s, F b ∨ FG ¬a)) 

•  Result: pmin(G ¬b ∧ GF a) = [ 0, 0, 0, 1 ] 
−  Sat(P>0 [ G ¬b ∧ GF a ]) = {s3} 
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LTL model checking for MDPs 
•  Maximal end components 

−  can optimise LTL model checking using maximal end 
components (there may be exponentially many ECs) 

•  Qualitative LTL model checking 
−  no numerical computation: use Prob1E, Prob0A algorithms 

•  Complexity of model checking LTL formula ψ on MDP M 
−  is doubly exponential in |ψ| and polynomial in |M| 
−  unlike DTMCs, this cannot be improved upon 

•  PCTL* model checking 
−  LTL model checking can be adapted to PCTL*, as for DTMCs 

•  Optimal adversaries for LTL formulae 
−  memoryless adversary always exists for pmax(s, GF a)  

and for pmax(s, FG a) but not for arbitrary LTL formulae 
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Summing up… 
•  Deterministic ω-automata (DBA or DRA) and DTMCs 

−  probability of language acceptance reduces to probabilistic 
reachability of set of accepting BSCCs in product DTMC 

•  LTL model checking for DTMCs 
−  via construction of DRA for LTL formula 
−  complexity: (doubly) exponential in the size of the LTL 

formula and polynomial in the size of the DTMC 
−  measurability of any ω-regular property on a DTMC  

•  PCTL* model checking for DTMCs 
−  combination of PCTL and LTL model checking algorithms 

•  LTL model checking for MDPs 
−  max. probabilities of reaching accepting end components 
−  min. probabilities through negation and max. probabilities 


